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Real-life ankle submovements and computer 
mouse use reflect patient-reported function 
in adult ataxias
Nicole M. Eklund,1 Jessey Ouillon,1 Vineet Pandey,2 Christopher D. Stephen,1,3 

Jeremy D. Schmahmann,1,3 Jeremy Edgerton,4 Krzysztof Z. Gajos2 

and Anoopum S. Gupta1,3

Novel disease-modifying therapies are being evaluated in spinocerebellar ataxias and multiple system atrophy. Clinician-performed 
disease rating scales are relatively insensitive for measuring disease change over time, resulting in large and long clinical trials. We 
tested the hypothesis that sensors worn continuously at home during natural behaviour and a web-based computer mouse task per
formed at home could produce interpretable, meaningful and reliable motor measures for potential use in clinical trials. Thirty-four 
individuals with degenerative ataxias (spinocerebellar ataxia types 1, 2, 3 and 6 and multiple system atrophy of the cerebellar type) 
and eight age-matched controls completed the cross-sectional study. Participants wore an ankle and wrist sensor continuously at home 
for 1 week and completed the Hevelius computer mouse task eight times over 4 weeks. We examined properties of motor primitives 
called ‘submovements’ derived from the continuous wearable sensors and properties of computer mouse clicks and trajectories in re
lationship to patient-reported measures of function (Patient-Reported Outcome Measure of Ataxia) and ataxia rating scales (Scale for 
the Assessment and Rating of Ataxia and the Brief Ataxia Rating Scale). The test–retest reliability of digital measures and differences 
between ataxia and control participants were evaluated. Individuals with ataxia had smaller, slower and less powerful ankle submove
ments during natural behaviour at home. A composite measure based on ankle submovements strongly correlated with ataxia rating 
scale scores (Pearson’s r = 0.82–0.88), strongly correlated with self-reported function (r = 0.81), had high test–retest reliability (intra
class correlation coefficient = 0.95) and distinguished ataxia and control participants, including preataxic individuals (n = 4) from 
controls. A composite measure based on computer mouse movements and clicks strongly correlated with ataxia rating scale total 
(r = 0.86–0.88) and arm scores (r = 0.65–0.75), correlated well with self-reported function (r = 0.72–0.73) and had high test–retest 
reliability (intraclass correlation coefficient = 0.99). These data indicate that interpretable, meaningful and highly reliable motor mea
sures can be obtained from continuous measurement of natural movement, particularly at the ankle location, and from computer 
mouse movements during a simple point-and-click task performed at home. This study supports the use of these two inexpensive 
and easy-to-use technologies in longitudinal natural history studies in spinocerebellar ataxias and multiple system atrophy of the cere
bellar type and shows promise as potential motor outcome measures in interventional trials.
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Abbreviations: AI = activity intensity; BARS = Brief Ataxia Rating Scale; es = effect size; ICC = intraclass correlation coefficient; 
MDS-UPDRS = Movement Disorder Society-Unified Parkinson Disease Rating Scale; MSA-C = multiple system atrophy, cerebellar 
type; PC = principal component; PCA = principal component analysis; PROM = Patient-Reported Outcome Measure; SARA =  
Scale for the Assessment and Rating of Ataxia; SCA = spinocerebellar ataxia; SM = submovement

Graphical Abstract

Introduction
Novel therapeutic modalities are now aimed at proximal dis
ease mechanisms in degenerative ataxias, for example target
ing expression of genes containing disease-related triplet 
repeat expansions in spinocerebellar ataxias (SCAs)1-3 and 
alpha-synuclein aggregation in multiple system atrophy 
(MSA).4 One major barrier to the successful development 
of therapies that slow or stop progression of movement 

disorders is a lack of tools that can reliably quantify disease 
worsening over the duration of a clinical trial. 
Clinician-performed disease rating scales, which are com
posed of semiquantitatively scored neurological examin
ation tasks, are subjective and coarse and capture the state 
of the individual at a snapshot in time.5 Thus, these rating 
scales have sources of variance that limit their sensitivity 
for measuring disease change, requiring long and large clin
ical trials to demonstrate efficacy.6,7 This raises particular 
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challenges for trials in rare diseases. Novel quantitative as
sessment tools have the potential to objectively and more 
precisely measure disease severity. However, when measure
ments are collected infrequently, as is the case for in-person 
assessments, these tools cannot account for day-to-day and 
moment-to-moment variability in the disease state and 
have limited ability to account for variability in behavioural 
task performance and measurement error. Furthermore, it 
can be unclear whether the measured disease characteristics 
reflect aspects of behavioural change that are meaningful to 
patients.

Assessments that are conducted remotely in a participant’s 
home environment, using powerful yet inexpensive and fa
miliar digital devices, are a promising approach.8-14

Behaviour can be sampled frequently and over multiple 
days, enabling measurements that can account for short- 
term variability to produce more reliable and precise esti
mates of disease severity.15-18 Assessment approaches that 
passively capture and analyze natural behaviour at home 
have access to different information than task-based ap
proaches and may produce more ecologically valid and 
meaningful measures. At-home assessments using inexpen
sive and easy-to-use tools also have the potential to reduce 
cost and burden on participants and clinical teams, while in
creasing access to clinical research and clinical care for trad
itionally underserved populations.

It was recently shown that a wearable sensor-based tech
nology that analyses natural wrist behaviour based on char
acteristics of motor primitives called ‘submovements’ (SMs) 
can sensitively measure changes in motor function over time 
in ataxia telangiectasia.19 It was also reported that analysis 
of computer mouse trajectories and clicks enabled accurate 
estimates of ataxia and parkinsonism severity and was able 
to sensitively detect disease change over time in individuals 
with ataxia, based on ‘in-clinic’ data collection.20 Here, we 
test the hypothesis that analysis of natural ankle and wrist 
movements as well as computer mouse movements at 
home in individuals with SCAs and MSA of the cerebellar 
type (MSA-C) can produce interpretable motor measures 
that reflect meaningful patient-reported function, have high 
reliability and are feasible for use in clinical trials.

Materials and methods
Recruitment and consent
The study protocol was approved by Partners Healthcare 
Research Committee Institutional Review Board (No. 
2019P003458). Informed consent was obtained from all par
ticipants prior to participating in this research study accord
ing to the Declaration of Helsinki.

Participants with SCA (types 1, 2, 3 or 6) or MSA-C were 
recruited from the Massachusetts General Hospital (MGH) 
Ataxia Center and through the National Ataxia Foundation 
(NAF) website. Participants’ spouses were recruited as con
trols if they had no known risk factors for ataxia.

To participate, subjects were required to be able to walk 
without human assistance (canes, walkers, etc. were accept
able), move a computer mouse to click objects on a computer 
screen, be native English speakers and be at least 18 years 
old. Participants with other conditions that affected speech 
and motor function or would interfere with their ability to 
participate safely were excluded from the study.

Forty-three participants consented to participate in the re
search study between November 2019 and May 2022, and 
42 were included in the analysis (four SCA1, two SCA2, 
20 SCA3, three SCA6, six MSA-C and eight age-matched 
controls, Table 1). One participant was excluded from ana
lysis for having misunderstood instructions, performing the 
computer mouse task for one session and wearing sensors 
for 1 day.

Equipment and supplies
Thirty-eight participants were provided with a study laptop, 
computer mouse and web camera to perform the study activ
ities, while four participants used a personal computer that 
met the study criteria. All participants were provided with 
two GENEActiv wearable sensor devices that collect triaxial 
accelerometer data at 100 Hz, one for the dominant wrist 
and one for the dominant ankle (see Supplementary 
Methods and Supplementary Fig. 1 for additional details).

Initial study appointment
Over a Zoom video conference, the study coordinator in
structed participants on how to activate and properly wear 
the GENEActiv devices, participants were introduced to 
the Hevelius computer mouse task, and clinical rating scales 
were conducted (described below).

Neurological assessment
All participants completed a neurological assessment via 
Zoom. An ataxia-specialist neurologist (A.S.G.) performed 
the Brief Ataxia Rating Scale (BARS)21 using the half-point 
version,22 the Scale for the Assessment and Rating of 
Ataxia (SARA)23 and Part III of the Movement Disorder 
Society-Unified Parkinson Disease Rating Scale 
(MDS-UPDRS).24 The sitting component of SARA and six 
rigidity components from UPDRS were excluded owing to 
the rater’s inability to perform/assess these tasks remotely. 
Thus, the SARA scale score ranged 0–36 instead of 0–40, 
and MDS-UPDRS Part III ranged 0–108 instead of 0–132. 
A second ataxia-specialist neurologist (C.D.S.) completed 
the rating scales from the recorded video, and the average 
of the two raters was used for analysis. Four participants 
had 1 missing score, one participant had 2 missing scores, 
and two participants had 3 missing scores, due to circum
stances such as safety concerns, environmental constraints, 
poor video quality or poor task performance. The primary 
ataxia rating scale subscores used in analysis were the 
SARA and BARS gait and SARA and BARS finger–nose–fin
ger, for which there were no missing scores. For SARA, 
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BARS and UPDRS total scores, a linear scaling was applied 
to individuals with missing scores such that the maximum 
possible score was aligned across all participants25 (Table 1).

Questionnaires
Participants completed the Patient-Reported Outcome 
Measure (PROM) questionnaires once at baseline and once 
at the conclusion of the study. The study feedback survey 
was completed at the end of the study. The questionnaires in
cluded PROM of Ataxia (PROM-Ataxia),26 the Dysarthria 
Impact Scale, Rand 36 Item Short Form Health Survey,27

five-level EuroQol 5D (EQ-5D-5L)28,29 and neurology 
quality-of-life (Neuro-QOL) fatigue subscale.30 The 70 

PROM-Ataxia questions were divided into overlapping sub
sections for analysis: motor (28), symptoms (25), emotion 
(10), cognition (7), arm (15) and gait and balance (12) (see 
Supplementary Table 1).

Weekly computer mouse task
Participants were asked to complete a computer mouse task 
(Hevelius) twice per week for 4 weeks (total 8 times). 
Participants used a mouse to click on targets as soon as 
they appeared on the screen.20 During the first study ap
pointment, participants set the minimum size of the target 
with a study team member to ensure that the target size 
was set to a reasonable level of difficulty. During a full 

Table 1 Participant demographic and clinical information

Age group Subject Sex Diagnosis BARS total SARA total MDS-UPDRS total PROM-Ataxia total EQ-5D-VAS (100–0)

30–40 1 F SCA3 0.75 0.8 1 73 67.5
2 M SCA3 5.75 5.5 6.5 64.5 82.5
3 F Control 0 0 0 23.5 100
4 F SCA3 19.75 19.9 41.5 107 83
5 F SCA3 14 15.8 38.5 123 77.5
6 F SCA3 0.25 1.3 3.5 54 73

41–50 7 F SCA3 15 18.1 41 117 35
8 M SCA3 5 6.5 19.5 69.5 60
9 M SCA3 17 17.5 28 152.5 78.5
10 M SCA3 21 25.8 50.5 167.5 67.5
11 F Control 0 0 2 16 82.5
12 M SCA3 5.75 5.8 11.5 19.5 77.5
13 F Control 0 0 0 9 97
14 F SCA1 11 13.4 36.2 131 50
15 F SCA3 4.25 4.8 9 53 92.5
16 F SCA2 9.5 11.8 26 128 77.5

51–60 17 F Control 0 0 0 12.5 94
18 M SCA2 17 16.8 29.5 138 89.5
19 F SCA3 13.75 16.3 22 118.5 44.5
20 M MSA-C 16.5 19.3 48 177.5 62
21 M Control 0 0 0 26 87.5
22 F SCA3 8.75 11.5 23.5 72.5 81
23 M SCA1 13.75 14.1 37 77.5 50
24 F MSA-C 18.5 18.7 31.7 181.5 57
25 M SCA3 10.5 9.8 15.5 31 87
26 M SCA3 10.75 9.8 18 21 94.5
27 F SCA6 5.5 5 12 49 90.5
28 F SCA3 9.25 13.5 21 56 93.5
29 M SCA3 1.5 1.5 7 44.5 88.5

61–72 30 M SCA3 11.75 11.5 16.5 152.5 27.5
31 M MSA-C 17.75 20.2 56.5 149.5 38
32 F Control 0 0 0 47.5 81
33 F SCA1 9.75 11 17.5 91.5 50
34 F Control 0 0 1 29 86.5
35 F MSA-C 7.25 8.3 14.5 112.5 40
36 F MSA-C 13 16 25.5 140 71.5
37 M Control 1.5 3.5 7 16.5 90
38 M MSA-C 14.5 16 28.5 90 85
39 M SCA3 16.75 16.3 40 145 88.5
40 M SCA6 2.5 1 6 67.5 96.5
41 M SCA6 5.5 3 4 56 90
42 F SCA3 14.75 17 24 142 79

Average SARA/BARS scores from the two virtual assessors are shown. Some total scores contain fractions of a point due to the linear scaling procedure applied for missing subscores 
(see ‘Materials and methods’ section). BARS, Brief Ataxia Rating Scale; EQ-5D-VAS, EuroQOL-5D-Visual Analogue Scale; PROM-Ataxia, Patient-Reported Outcome Measure of 
Ataxia; SARA, Scale for the assessment and rating of ataxia; UPDRS, Unified Parkinson’s Disease Rating Scale.
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session of the computer mouse task, participants performed 
eight rounds of nine targets per round. The task yields 33 fea
tures that describe the participant’s timing, speed and accur
acy during the task.20 The task also yields composite 
measures based on previously trained regression and classifi
cation models that provide estimates of ataxia and parkin
sonism severity and the probability that a participant has 
ataxia. The outputs from these previously trained models 
were used in analysis (i.e. models were not trained on the 
data collected in this study). Descriptions of individual 
Hevelius features and models can be found in Gajos et al.20

and Supplementary Table 3.

Wearable sensor data processing and 
feature types
Each participant’s wearable sensor data were manually par
titioned into day and night segments based on changes in 
each participant’s daily activity level represented in the accel
erometer data.19,25 To account for differences in the time of 
day that sensor recording began across participants, day/ 
night segmentation was started at the onset of the first full 
night of recording. This produced a maximum of six con
secutive 24-h periods of recording. Data analysis focused 
on daytime segments. Gravity and high-frequency noise 
were removed from the acceleration time series using a 
sixth-order Butterworth filter with cut-off frequencies of 
0.1 and 20 Hz.25,31

Several classes of features were extracted from daytime an
kle and wrist sensor data. These included ‘total power’ in the 
0.1- to 5-Hz frequency range and features based on the distri
bution of ‘activity intensity’ (AI) computed in 1-s time bins, as 
per previous work from passive wrist sensor data collection in 
ataxia telangiectasia.19,25 Features were also extracted from 
‘activity bouts’ and from SMs.19 Fig. 1 describes how activity 
bouts and SMs were extracted from continuous accelerom
eter data collected over a 24-h period. Table 2 provides a de
scription of the 85 features extracted from ankle and wrist 
sensor data. Based on prior work, single feature analysis 
was performed on a subset of 26 key features of interest 
(bolded in Table 2). These included AI mean (one feature), 
AI entropy (one feature), SM distance (eight features), SM 
velocity (eight features) and SM acceleration (eight features). 
Mean and standard deviation were computed over a partici
pant’s SMs for short-duration and long-duration SMs in the 
primary and secondary directions of planar movement result
ing in 2 ∗ 2 ∗ 2 = 8 total features (see Fig. 1 and Table 2).

Ankle sensor regression models
Although single feature analysis was restricted to a subset of 
26 features, all 85 ankle sensor features were used as input to 
regression models trained to estimate clinician-rated ataxia 
severity and patient-reported function. Given the large num
ber of features relative to the number of participants in the 
current study, linear regression models with L1 regulariza
tion (i.e. lasso regression)35 were trained to select a small 

subset of the input variables. Each feature was Z-score trans
formed prior to model training such that feature value ranges 
and model weights were comparable. BARS total score was 
used as the target variable for the ataxia severity estimation 
model as it offered additional granularity with its half-point 
scores. PROM-Ataxia was used as the target variable for the 
motor function estimation model. Leave-one-out cross- 
validation was used to train and estimate generalization per
formance of the models/composite measures. Pearson correl
ation coefficient was used to measure performance, with 
each model compared with SARA total, SARA gait, BARS 
total, BARS gait, PROM-Ataxia total and PROM-Ataxia 
gait subscore.

Statistical analyses
Statistical analyses were completed in MATLAB 
(Mathworks, Natick, MA) and SPSS (IBM Corp., Armonk, 
NY). The Mann–Whitney U-test was used to determine indi
vidual feature and age differences between disease and con
trol groups and Cohen’s d was used to measure effect size 
(es). The Mann–Whitney U-test was also used to determine 
individual feature, age and disease severity differences be
tween female and male participants. The Benjamini– 
Hochberg method was used to adjust for multiple compari
sons, and corrected P-values are reported.36 Corrected 
P-values < 0.05 were considered significant. Single measure 
intraclass correlation coefficients (ICCs) were used to deter
mine the test–retest reliability of wrist, ankle and Hevelius 
features. To evaluate reliability for wrist and ankle features, 
features were computed from data recorded in Days 1–3 and 
Days 4–6, separately, and ICCs were computed using a two- 
way mixed effects model.37 The Hevelius task produced fea
tures for each of the eight sessions performed over the 
4-week period. To evaluate reliability of Hevelius features, 
the median feature values for the first four sessions and the 
median values for the last four sessions were computed, 
and ICCs were computed as described above (if only six 
sessions were performed, the sessions were split into 
two three-session groups). Test–retest reliability for ques
tionnaires was similarly evaluated by computing ICCs be
tween Weeks 1 and 4 survey completion. Pearson 
correlation coefficients and P-values were used to evaluate 
the relationship between ankle sensor, wrist sensor and 
Hevelius features with ataxia rating scales (SARA and 
BARS) and patient-reported measures of function 
(PROM-Ataxia). 95% confidence intervals are reported in 
parentheses for key comparisons in the main text. Ankle sen
sor and wrist sensor features were derived from up to a max
imum of 6 days of data. For Hevelius, median feature values 
across up to eight sessions were used in this analysis. As 
above, the Benjamini–Hochberg method was used to adjust 
for multiple comparisons for each sensor type.36 Pearson 
correlation coefficients and P-values were also used to evalu
ate relationships between PROMs and ataxia rating scales. 
As PROMs were performed twice, the mean PROM score 
was used to compute the correlation coefficient. To avoid 
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inflated correlation values driven by differences between 
control and ataxia participants, Pearson correlation coeffi
cients were computed using data from ataxia (SCAs and 
MSA) participants only.

Results
Demographic and clinical information for participants is 
shown in Table 1. There were no age differences between 
ataxia (range: 30–72 years) and control (range: 32–69 years) 
groups (P = 0.86). There were 17 female and 17 male parti
cipants in the ataxia group and six female and two male par
ticipants in the control group. There were no age (P = 0.15) 

or SARA total score (P = 0.42) differences between female 
and male participants.

Clinical and patient-reported 
assessments
Individual-level BARS, SARA, MDS-UPDRS and 
PROM-Ataxia scores are shown in Table 1, and scores bro
ken down by individual diagnosis are shown in 
Supplementary Table 2. Four SCA participants were prea
taxic (two male and two female), defined as having SARA to
tal score < 3 (range: 0.75–1.5),38,39 and 11 ataxia 
participants had a SARA/BARS gait score ≥ 6, indicating 
the need for a walker.

Table 2 Descriptions for each type of wearable sensor feature

Feature 
level Feature(s) name N Description

Activity 
index

AI mean 1 Activity index32 was computed for each 1-s window of triaxial accelerometer data over the recording 
period. ‘Activity intensity (AI) mean’ is the mean activity index value over all daytime activity over the 
week-long period. ‘Periods of inactivity are excluded from the calculation of AI mean, AI median, AI mode 
and AI entropy’.30

AI median 1 Median activity intensity over all daytime activity.
AI mode 1 The most common value (mode) of activity intensity over all daytime activity.
AI entropy 1 The entropy of the distribution of daytime activity intensity.
% daytime with low AI 1 The percentage of daytime that is spent performing low-intensity movements as previously defined.30

% daytime with 
moderate AI

1 The percentage of daytime that is spent performing moderate-intensity movements.

% daytime with high AI 1 The percentage of daytime that is spent performing high-intensity movements.
% accel in single 

direction
3 For each 1-s window of movement, principal component analysis was performed on the triaxial 

accelerometer data to identify the principal direction of acceleration. This feature is the percentage of 
accelerometer data variance explained by the first principal component direction, averaged over 1-s 
windows. This measure was computed separately for low AI, moderate AI and high AI 1-s windows 
resulting in three features.

Spectral Total power 1 Cumulative power in the 0.1- to 5-Hz frequency band.
Activity bout Bout acceleration 2 ‘Activity bouts’ are continuous periods of activity with durations between 4 and 18 s long based on an 

activity index threshold.19 Bout acceleration is the maximum acceleration in m/s2 during an activity bout. 
‘M and SD are computed over a participant’s activity bouts resulting in two features (applies to bout 
acceleration and bout jerk)’.

Bout jerk 2 Bout jerk is the mean jerk (derivative of acceleration) in m/s3 during an activity bout.
SM SM distance 8 The distance in meters traveled during a submovement (SM). ‘Mean and standard deviation are computed 

over a participant’s SMs for short-duration and long-duration SMs in the primary and secondary 
directions of planar movement resulting in 2 ∗ 2 ∗ 2 = 8 total features (applies to SM distance, velocity, 
acceleration, jerk and duration)’.

SM velocity 8 The maximum velocity in m/s during a SM.
SM acceleration 8 The maximum acceleration in m/s2 during a SM.
SM jerk 8 The normalized jerk of a SM. This measure is dimensionless and is scaled based on SM duration and SM peak 

velocity.20,33,34

SM duration 8 The duration of a SM in seconds.
SM PC1 score 6 The principal component 1 (PC1) score for a submovement. PC1 captures low-frequency characteristics of 

the SM velocity–time curve (e.g. the SM ‘shape’). The PC1 ‘basis function’ is a single sinusoidal waveform 
with the peak present in the first half of the submovement.19 ‘Mean absolute value, standard deviation and 
kurtosis are computed for long-duration SMs in the primary and secondary directions of movement 
resulting in 3 ∗ 2 = 6 total features (applies to SM PC1–5 scores)’.

SM PC2 score 6 The principal component 2 score for a submovement. Similar to PC1, PC2 captures low-frequency 
characteristics of the SM velocity–time curve. The PC2 basis function is a single sinusoidal waveform with 
the peak present in the second half of the submovement.19

SM PC3–5 scores 18 The principal component 3–5 scores for a submovement. PC3–5 scores capture higher frequency 
characteristics of the SM velocity–time curve. The PC3, PC4 and PC5 basis functions consist of 1.5, 2 and 
2.5 sinusoidal cycles, respectively.19

Bolded features were preselected for individual feature analysis. AI, activity intensity; N, number of features; M, mean; PC, principal component; SD, standard deviation; s, seconds; SM, 
submovement.
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We found strong pairwise correlations between the re
mote assessment clinical rating scales (BARS, SARA and 
MDS-UPDRS). BARS was strongly correlated with both 
SARA (r = 0.97) and MDS-UPDRS (r = 0.88). BARS, 
SARA and MDS-UPDRS demonstrated significant correla
tions with PROM-Ataxia total score (r = 0.75, 0.76 and 
0.70, respectively). BARS total demonstrated significant cor
relations with PROM-Ataxia score subsets of symptoms, 
motor, arm and gait (r = 0.65, 0.80, 0.80 and 0.81, respect
ively). SARA total also demonstrated significant correlations 
with PROM-Ataxia symptoms, motor, arm and gait sub
scores (r = 0.67, 0.82, 0.80 and 0.83, respectively). 
Relationships between ataxia rating scales and 
PROM-Ataxia are reported in Supplementary Table 4.

Test–retest reliability was high for PROM-Ataxia total 
score (ICC = 0.95), PROM-Ataxia motor subscore (ICC =  
0.95) and PROM-Ataxia symptom subscore (ICC = 0.95) 
and was moderate for PROM-Ataxia emotion (ICC = 0.79) 
and cognition (ICC = 0.71) subscores. For the EQ-5D-5L 
questionnaire, test–retest reliability was high for the mobility 
(ICC = 0.89), usual activities (ICC = 0.82) and anxiety/de
pression (ICC = 0.75) subsections. Test–retest was lower 
for the pain/discomfort (ICC = 0.40) and self-care (ICC =  
0.62) sections of the survey. The test–retest properties of 
patient-reported outcomes are shown in Supplementary 
Table 5.

Continuous ankle sensor data
Most ankle SM features were significantly correlated with 
SARA and BARS total scores and gait subscores, 
PROM-Ataxia total score and PROM-Ataxia gait subset 
score (Table 3). There were no ankle sensor-based features 
that were significantly different between female and male 
participants.

Ankle SM distance
For ankle SM distance features, short-duration SMs in the 
direction orthogonal to the primary direction of movement 
[i.e. principal component 2 (PC2) direction] were most 
strongly related to SARA, BARS and PROM-Ataxia (see 
bolded rows in Table 3). Mean distance of this SM group 
was strongly negatively correlated with SARA total [r =  
−0.74 (−0.54 to −0.86)] and SARA gait subscore [r =  
−0.79 (−0.61 to −0.89)] and was moderately correlated 
with PROM-Ataxia total [r = −0.62 (−0.35 to −0.79)] and 
PROM-Ataxia gait subscore [r = −0.66 (−0.42 to −0.82)]. 
Variance of distances of short-duration SMs in the PC2 dir
ection of movement were strongly negatively correlated with 
SARA total, SARA gait, PROM-ataxia total and 
PROM-Ataxia gait [r = −0.79 (−0.61 to −0.89), −0.83 
(−0.68 to −0.91), −0.74 (−0.54 to −0.86) and −0.75 
(−0.56 to −0.87), respectively]. These two SM distance fea
tures had high test–retest reliability across the first and se
cond half of the week of data collection (ICC = 0.89–0.92) 
and were significantly different between ataxia and control 

participants [es = 1.5–1.7, P < 0.005]. Thus, SM distances 
were smaller and less variable in individuals with ataxia 
and became progressively smaller with reduced self-reported 
function and increased ataxia severity, especially for short- 
duration SMs orthogonal to the primary direction of 
movement.

Ankle SM peak velocity
SM peak velocity features also demonstrated that SMs in the 
PC2 direction (orthogonal to the primary direction of move
ment) were most strongly related to SARA and 
PROM-Ataxia. SM peak velocity was informative for both 
long and short-duration SM groups (Table 3). Mean peak 
velocity of the long-duration SM group in the PC2 direction 
was highly negatively correlated with SARA total [r = −0.78 
(−0.60 to −0.88)], SARA gait subscore [r = −0.76 (−0.57 to 
−0.87)], PROM-Ataxia total [r = −0.80 (−0.63 to −0.90)] 
and PROM-Ataxia gait subscore [r = −0.81 (−0.64 to 
−0.90)]. This feature also showed very high test–retest reli
ability (ICC = 0.95) and strongly distinguished ataxia and 
control groups (es = 1.7, P < 0.01). Scatter plots for these re
lationships are shown in Fig. 2. Variance in peak velocities of 
both long and short-duration SMs in the PC2 direction of 
movement showed similar properties (Table 3). Thus, SM 
peak velocities became progressively smaller and less vari
able with decreasing self-reported function and increased 
ataxia severity, especially for SMs orthogonal to the primary 
direction of movement.

Ankle SM peak acceleration
SM peak acceleration features were informative for longer 
duration SMs in the PC2 direction, but less so for shorter 
duration SMs. Mean peak acceleration of this SM group 
was strongly negatively correlated with SARA total [r =  
−0.78 (−0.59 to −0.88)] and SARA gait subscore [r =  
−0.81 (−0.65 to −0.90)] and moderately correlated with 
PROM-Ataxia total [r = −0.61 (−0.34 to −0.78)] and 
PROM-Ataxia gait subscore [r = −0.65 (−0.40 to −0.81)]. 
This feature showed high test–retest reliability (ICC = 0.94) 
and strongly distinguished ataxia and control groups (es =  
1.8, P < 0.005). All four SM peak acceleration variability 
features were significantly lower in preataxic individuals 
(n = 4) compared to controls (n = 7) with SARA total score  
< 3, although they did not remain significant after correction 
for multiple comparisons. Out of all 26 individual ankle sen
sor features, these were the only four that were significantly 
different between preataxic individuals and controls prior to 
correction for multiple comparisons.

Ankle AI
AI mean and entropy were negatively correlated with SARA 
total [r = −0.67 (−0.43 to −0.82) and −0.72 (−0.50 to 
−0.85), respectively], SARA gait subscore [r = −0.73 
(−0.52 to −0.86) and −0.78 (−0.61 to −0.89)], PROM total 
[r = −0.65 (−0.39 to −0.81) and −0.65 (−0.40 to −0.81)] 
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and PROM gait subscore [r = −0.68 (−0.45 to −0.83) and 
−0.70 (−0.47 to −0.84)]. The two AI-based features showed 
high test–retest reliability (ICC = 0.88, 0.93) and were differ
ent between ataxia and control participants (es = 1.5, 1.4, 
P < 0.01). These findings indicate that ankle movements 
were progressively less intense with a narrower range of in
tensity levels as disease severity increased among participants 
in the study.

Ankle regression models
Two separate regression models were trained, one to esti
mate ataxia severity and one to estimate self-reported func
tion, based on the full set of 85 ankle sensor features. As 
shown in Table 3, the ataxia severity prediction model corre
lated strongly with SARA total [r = 0.82 (0.66–0.91)], SARA 
gait [r = 0.84 (0.71–0.92)], BARS total [r = 0.83 (0.68– 
0.91)], BARS gait [r = 0.88 (0.77–0.94)], PROM-Ataxia to
tal [r = 0.81 (0.64–0.90)] and PROM-Ataxia gait [r = 0.81 
(0.65–0.90)]. The model had very high test–retest reliability 
(ICC = 0.95) and strongly distinguished ataxia and control 
participants (es = 1.8, P < 0.001). Both models also were sig
nificantly different between preataxic and control partici
pants with SARA total score < 3 (es = 1.4–1.6, P < 0.05). 
Across all cross-validation folds, the model drew informa
tion primarily from only four features: variance in the dis
tance of short-duration SMs in the PC2 direction, mean 
peak velocity of long-duration SMs in the PC2 direction, 
mean jerk during activity bouts and percent of acceleration 
data variance explained in a single direction for high AI 1-s 
windows (see Table 2). The first two selected features were 
expected based on the single feature analysis described 
above. The latter two features, which were not a priori 

included in individual feature analysis, indicated that indivi
duals with ataxia had progressively lower mean jerk during 
activity bouts and a progressively higher percent of triaxial 
(i.e. 3D) acceleration variance explained by a single direc
tion, as disease severity increased. These two features suggest 
that natural ankle movements become less powerful and less 
flexible as disease progresses. The four informative features 
were selected in 100% of cross-validation folds with average 
model coefficients of −1.49, −1.06, −1.33 and 0.81, respect
ively. Only three other features were selected in any cross- 
validation folds; two were selected in 2% of folds, and one 
was selected in 12% of folds. The second regression model 
that was explicitly trained to estimate self-reported function 
generated outputs with similar properties (Table 3); how
ever, more features were selected across all cross-validation 
folds (27) with an average of 9.5 features selected per fold.

Continuous wrist sensor data
The majority of wrist SM distance, velocity and acceleration 
features were significantly correlated with SARA, BARS and 
PROM-Ataxia (Supplementary Table 6). The observed rela
tionships with patient-reported function and ataxia severity 
were less strong compared to ankle SMs: across all wrist SM 
features, the strongest correlations with each clinical and 
patient-reported score were −0.64 (−0.39 to −0.81) with 
SARA total, −0.46 (−0.14 to −0.69) with SARA arm, 
−0.56 (−0.27 to −0.75) with BARS arm, −0.66 (−0.42 to 
−0.82) with PROM-Ataxia total and −0.68 (−0.44 to 
−0.83) with PROM-Ataxia arm. Correlations between wrist 
sensor features and BARS finger–nose–finger score were 
stronger and more often statistically significant than correla
tions with SARA finger–nose–finger score. As with ankle 

Figure 2 Properties of a single ankle submovement feature: peak velocity of long-duration submovements in the secondary 
direction of movement (n = 42). (A and B) Relationship of the feature with SARA total score and gait subscore. (C and D) Relationship of the 
feature with PROM-Ataxia total score and gait subscore. (E) Test–retest reliability of the feature. (F) Disease versus control violin plot. 
PROM-Ataxia, Patient-Reported Outcome Measure of Ataxia; SARA, Scale for the Assessment and Rating of Ataxia.
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Table 4 Properties of Hevelius computer mouse task features and models

Sensor Feature name

Relationship with SARA (BARS)
Relationship with 

PROM-Ataxia

Test– 
retest 

reliability

Disease 
versus 
controlTotal Arm subscore (FNF) Total

Arm 
subset

r P-value r P-value* r P-value r P-value ICC P-value es

Hevelius 
(single 
features)

Movement time 0.84 (0.83) 9.0E-09 0.61 (0.73) (6.0E-06) 0.67 2.0E-04 0.68 4.0E-05 0.99 2.0E-03 2.0
Movement time (CV) 0.85 (0.86) 8.0E-09 0.66 (0.73) (6.0E-06) 0.71 2.0E-04 0.73 3.0E-05 0.94 2.0E-03 1.7
Execution time 0.83 (0.81) 3.0E-08 0.56 (0.69) (3.0E-05) 0.67 2.0E-04 0.68 4.0E-05 0.99 2.0E-03 1.9
Execution time (CV) 0.82 (0.83) 2.0E-08 0.69 (0.75) (4.0E-06) 0.68 2.0E-04 0.72 3.0E-05 0.92 9.0E-03 1.3
Execution time without 

pauses
0.76 (0.74) 8.0E-07 0.46 (0.59) (6.0E-04) 0.63 3.0E-04 0.60 5.0E-04 0.97 2.0E-03 1.8

Execution time without 
pauses (CV)

0.79 (0.82) 9.0E-08 0.73 (0.77) (2.0E-06) 0.65 2.0E-04 0.72 3.0E-05 0.84 2.0E-03 1.9

Verification time 0.45 (0.47) 9.0E-03 0.47 (0.46) (1.0E-02) 0.43 2.0E-02 0.40 3.0E-02 0.89 n.s. -
Verification time (SD) 0.75 (0.76) 2.0E-06 0.66 (0.73) (6.0E-06) 0.59 6.0E-04 0.58 8.0E-04 0.96 2.0E-03 1.7
Number of pauses 0.82 (0.82) 3.0E-08 0.69 (0.78) (2.0E-06) 0.62 4.0E-04 0.69 4.0E-05 0.97 2.0E-03 2.0
Duration of longest pause 0.82 (0.81) 3.0E-08 0.69 (0.78) (1.0E-06) 0.61 4.0E-04 0.68 5.0E-05 0.97 2.0E-03 2.0
Max speed - n.s. - n.s. - n.s. - n.s. 0.95 n.s. -
Max speed (CV) 0.72 (0.76) 4.0E-06 0.54 (0.62) (3.0E-04) 0.52 3.0E-03 0.59 7.0E-04 0.85 2.0E-03 1.8
Max acceleration - n.s. - n.s. - n.s. - n.s. 0.95 n.s. -
Max acceleration (CV) 0.56 (0.60) 9.0E-04 0.44 (0.49) (6.0E-03) 0.37 4.0E-02 0.43 2.0E-02 0.80 5.0E-03 1.3
Normalized jerk 0.80 (0.80) 7.0E-08 0.56 (0.67) (5.0E-05) 0.67 2.0E-04 0.69 3.0E-05 0.98 3.0E-03 1.9
Normalized jerk without 

pauses
0.75 (0.75) 2.0E-06 0.46 (0.59) (6.0E-04) 0.61 4.0E-04 0.62 3.0E-04 0.97 2.0E-03 1.9

Click duration 0.75 (0.68) 2.0E-06 0.51 (0.64) (2.0E-04) 0.53 3.0E-03 0.47 7.0E-03 0.96 2.0E-03 1.6
Click duration (SD) 0.67 (0.61) 3.0E-05 0.40 (0.52) (4.0E-03) 0.49 6.0E-03 0.44 2.0E-02 0.82 2.0E-03 1.3
Movement direction changes 0.45 (0.47) 9.0E-03 - n.s. 0.37 4.0E-02 0.44 2.0E-02 0.93 3.0E-03 1.8
Orthogonal direction changes 0.61 (0.60) 3.0E-04 0.34 (0.48) (8.0E-03) 0.50 5.0E-03 0.56 2.0E-03 0.95 5.0E-03 1.4
Task axis crossings 0.47 (0.49) 7.0E-03 0.28 (0.38) (3.0E-02) 0.42 2.0E-02 0.48 6.0E-03 0.89 2.0E-03 1.7
Max deviation from task axis 0.55 (0.55) 2.0E-03 0.28 (0.40) (3.0E-02) 0.48 6.0E-03 0.50 4.0E-03 0.93 n.s. -
Movement error 0.59 (0.59) 5.0E-04 0.33 (0.43) (2.0E-02) 0.54 3.0E-03 0.56 2.0E-03 0.94 n.s. -
Movement offset 0.58 (0.58) 5.0E-04 0.31 (0.41) (3.0E-02) 0.49 5.0E-03 0.48 6.0E-03 0.85 n.s. -
Movement variability 0.56 (0.56) 1.0E-03 0.30 (0.41) (3.0E-02) 0.50 5.0E-03 0.52 3.0E-03 0.94 n.s. -
Distance from target at 

end of main SM
0.79 (0.81) 9.0E-08 0.59 (0.69) (3.0E-05) 0.66 2.0E-04 0.69 4.0E-05 0.95 2.0E-03 2.2

Target re-entries 0.71 (0.73) 6.0E-06 0.55 (0.64) (2.0E-04) 0.64 3.0E-04 0.71 3.0E-05 0.93 2.0E-03 1.9
Click slip 0.45 (0.42) 9.0E-03 - n.s. - n.s. - n.s. 0.86 2.0E-02 1.2
Fraction distance covered in 

main SM
0.42 (0.48) 2.0E-02 - n.s. 0.41 2.0E-02 0.49 6.0E-03 0.82 3.0E-02 1.0

Fraction of main SM spent 
accelerating

0.50 (0.48) 3.0E-03 0.39 (0.39) (3.0E-02) 0.51 4.0E-03 0.48 6.0E-03 0.84 n.s. -

Number of submovements 0.55 (0.58) 2.0E-03 0.53 (0.55) (2.0E-03) 0.46 8.0E-03 0.56 2.0E-03 0.96 2.0E-02 1.1
Main submovement 0.56 (0.60) 9.0E-04 0.32 (0.39) (3.0E-02) 0.51 4.0E-03 0.60 5.0E-04 0.83 n.s. -
Noise to force ratio 0.74 (0.73) 2.0E-06 0.53 (0.63) (2.0E-04) 0.60 5.0E-04 0.54 2.0E-03 0.94 2.0E-03 1.7

Hevelius 
(models)

BARS total prediction 
model

0.85 (0.84) 2.0E-10 0.58 (0.71) (3.0E-06) 0.67 2.0E-05 0.70 5.0E-06 0.98 9.0E-05 2.2

BARS arm prediction 
model

0.87 (0.85) 4.0E-11 0.59 (0.72) (2.0E-06) 0.69 8.0E-06 0.70 4.0E-06 0.98 2.0E-04 2.1

UPDRS total prediction 
model

0.88 (0.86) 5.0E-12 0.65 (0.75) (4.0E-07) 0.73 1.0E-06 0.72 2.0E-06 0.99 4.0E-04 1.8

UPDRS arm prediction 
model

0.80 (0.79) 2.0E-08 0.62 (0.70) (4.0E-06) 0.64 5.0E-05 0.63 6.0E-05 0.98 3.0E-04 1.8

Pairwise comp total 
prediction model

0.83 (0.82) 2.0E-09 0.60 (0.71) (3.0E-06) 0.68 2.0E-05 0.71 3.0E-06 0.97 3.0E-05* 2.5

Pairwise comp arm 
prediction model

0.81 (0.81) 5.0E-09 0.66 (0.75) (3.0E-07) 0.63 7.0E-05 0.66 2.0E-05 0.96 2.0E-05* 2.7

Ataxia versus controls 
prediction model

0.73 (0.71) 2.0E-06 0.53 (0.65) (4.0E-05) 0.48 5.0E-03 0.53 2.0E-03 0.95 2.0E-05* 4.0

Relationships with ataxia rating scales and patient-reported function, test–retest reliability, and disease versus control statistics are provided. Key features/models 
are bolded. Features that were significantly different between preataxic individuals and controls are marked in the disease versus control P-value column with an (*). 
Relationships that are not significant are labelled as ‘n.s.’. The P-values reported for the relationships with the ataxia rating scale arm subscore are for the BARS arm 
subscore as these relationships were stronger than the SARA arm subscore relationships. BARS, Brief Ataxia Rating Scale; CV, coefficient of variation; es, effect size; 
FNF, finger–nose–finger; ICC, intraclass correlation coefficient; PROM-Ataxia, Patient-Reported Outcome Measure of Ataxia; r, Pearson correlation coefficient; 
SARA, scale for the assessment and rating of ataxia; SD, standard deviation; SM, submovement; UPDRS, Unified Parkinson’s Disease Rating Scale.
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SMs, wrist SM distance, peak velocity and peak acceleration 
became progressively smaller and less variable with reduced 
self-reported function and increased ataxia severity. There 
were no wrist sensor-based features that were significantly 
different between female and male participants. Although 
correlations with clinical scales were lower for the wrist sen
sor compared with the ankle sensor, many wrist movement 
features demonstrated very high test–retest reliability 
(Supplementary Table 6). This indicates that reliable infor
mation is obtained from the wrist sensor, but it differs sub
stantially from information captured in clinical scales. 
Longitudinal data are needed to determine if wrist sensor in
formation sensitively captures disease change over time as 
seen in ataxia telangiectasia.19

Hevelius computer mouse task data
There were no Hevelius computer mouse task features that 
were significantly different between female and male partici
pants. Most Hevelius features were significantly correlated 
with SARA and BARS total scores and arm subscores, 
PROM-Ataxia total score and PROM-Ataxia arm subset score 
(Table 4). Individuals with ataxia took longer and had more 
variability in the time to perform each trial of the task. The co
efficient of variation (CV) of movement time was strongly posi
tively correlated with SARA total [r = 0.85 (0.72–0.92), 
respectively], SARA arm [r = 0.66 (0.41–0.82)], BARS arm 
[r = 0.73 (0.52–0.86)], PROM-Ataxia total [r = 0.71 (0.48– 
0.84)] and PROM-Ataxia arm [r = 0.73 (0.52–0.86)]. The 

mean and CV of movement time also showed very high test–re
test reliability (ICC = 0.99 and 0.94, respectively) and strongly 
distinguished between ataxia and control participants (es = 2.0 
and 1.7, P < 0.002). The number of pauses and duration of the 
longest pause were increased in individuals with ataxia and 
showed similarly strong correlations with ataxia rating scales 
and self-reported function along with high test–retest reliabil
ity. Individuals with ataxia had higher normalized jerk during 
their mouse movements and demonstrated reduced accuracy of 
movements as reflected by larger distances to the target remain
ing after the main SM and more target re-entries. The number 
of movement direction changes was the only feature that was 
significantly different between preataxic (n = 4) and control 
(n = 7) participants with SARA total score < 3; however, this 
did not remain significant after correction for multiple 
comparisons.

The previously trained regression model for estimating 
UPDRS Part III20 showed particularly strong correlations 
with SARA total [r = 0.88 (0.78–0.94)], BARS arm [r =  
0.75 (0.55–0.87)], PROM-Ataxia total [r = 0.73 (0.52– 
0.86)] and PROM-Ataxia arm [r = 0.72 (0.50–0.85)]. This 
model had an ICC of 0.99 and differentiated ataxia and con
trol participants with an es of 1.8 (Fig. 3). The previously 
trained pairwise comparisons severity estimation models 
and the classification model20 were significantly different be
tween preataxic individuals and control participants with 
SARA total score < 3 (es = 1.6–2.0, P < 0.03). The pairwise 
comparisons severity estimation models also strongly differ
entiated all ataxia and control participants (es = 2.5–2.7) 

Figure 3 Properties of a Hevelius composite model: regression model previously trained to estimate parkinsonism severity 
(n = 42). This model, which was trained to estimate parkinsonism severity as represented by UPDRS Part III, demonstrated particularly strong 
relationships with ataxia rating scales, patient-reported function, and had high test–retest reliability. (A and B) Relationship of the model with 
SARA total score and BARS arm subscore. Hevelius task features were consistently more strongly associated with BARS finger–nose–finger score 
than SARA finger–nose–finger; thus, the relationship with BARS arm is shown (see Table 4). (C and D) Relationship of the model with 
PROM-Ataxia total score and arm subscore. (E) Test–retest reliability of the model. (F) Disease versus control violin plot. BARS, Brief Ataxia 
Rating Scale; PROM-Ataxia, Patient-Reported Outcome Measure of Ataxia; SARA, Scale for the Assessment and Rating of Ataxia; UPDRS, unified 
Parkinson’s Disease Rating Scale.
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and had strong relationships with ataxia severity and self- 
reported function (Supplementary Fig. 2). Regression model 
parameters are shown in Supplementary Table 3.

Study feedback survey
Participants completed the feedback survey on the last day of 
the study. Seventy-six percent (32/42) of participants re
ported that they would be willing to complete the full assess
ment again, 14% (6/42) of participants reported that they 
would be willing to complete a shorter version of the assess
ment, 7% (3/42) were unsure and 2% (1/42) reported that 
they probably would not be willing to complete the assess
ment again. 51.9% (14/29) of ataxia participants who re
ported unsteadiness responded that they thought the 
wearable sensor was able to capture their unsteadiness. 
Three individuals noted that they were unsure what the 
wearable sensors were measuring. Thirty-five percent (8/ 
23) of ataxia participants who reported a lack of coordin
ation and/or fatigue responded that they thought the com
puter mouse task was able to capture these symptoms.

Discussion
We have shown that digital devices used entirely at home can 
characterize and quantify self-reported motor function and 
ataxia with high accuracy and high reliability. In particular, 
a regression model based on continuous at-home ankle accel
erometer data produced a motor measure that strongly cor
related with ataxia rating scale total and gait scores (r =  
0.82–0.88), strongly correlated with self-reported overall 
and gait function (r = 0.81), had high test–retest reliability 
(ICC = 0.95) and distinguished ataxia and control partici
pants, including preataxic individuals. A regression model 
based on at-home computer mouse task performance 
produced a motor measure that also strongly correlated 
with ataxia rating scale total (r = 0.86–0.88) and arm scores 
(r = 0.65–0.75), correlated well with self-reported overall 
and arm function scores (r = 0.72–0.73) and had high test– 
retest reliability (ICC = 0.99). These data demonstrate that 
the two assessment technologies provide meaningful and re
liable measures of motor function in degenerative ataxias 
and have population-level sensitivity to disease change. 
Both tools should be evaluated longitudinally in natural his
tory studies to assess individual-level sensitivity to disease 
progression over time.

Ankle SM characteristics in ataxia
The ankle sensor used in this study was worn continuously 
for 1 week and did not require that participants perform a 
specific motor task. Interpretation of passively collected ac
celerometer data can be challenging without knowledge of 
the specific behaviours being performed. To address this 
challenge, data analysis focused on characterizing motor pri
mitives called SMs, extracted automatically from accelerom
eter data during natural behaviour.19 There is evidence that 

motor control is achieved by combining elementary SMs to 
compose voluntary motor behaviours.40-43 The concept of 
movement composition from SMs is of particular relevance 
in cerebellar ataxias where movements are observed to be
come segmented or decomposed into constituent parts,44 po
tentially due to dyssynchrony of the movement 
components45,46 or as a compensatory strategy to maximize 
terminal movement accuracy.47-49 Thus, SM-level analysis 
provides a mechanism to quantify motor impairment—spe
cifically decomposition of movement—without needing to 
identify specific types of motor behaviours. We found that 
ankle SM distance, peak velocity and peak acceleration 
were smaller in ataxia participants compared to controls 
and became progressively smaller and less variable as self- 
reported function decreased and ataxia severity increased. 
SMs in the plane orthogonal to the primary direction of mo
tion were highly reflective of motor function and ataxia se
verity; more so than SMs in the primary direction of 
motion. All four SM acceleration variance measures showed 
decreased variability in peak acceleration in preataxic indivi
duals compared to controls, although this did not remain sig
nificant after correction for multiple comparisons. This 
pattern of smaller, less powerful, and less flexible SMs in 
ataxia is consistent with recent descriptions of ankle SMs 
in adults with ataxia during a gait task,50 arm SMs in indivi
duals with ataxia during reaching tasks51-53 and wrist SMs in 
a paediatric genetic ataxia (ataxia telangiectasia) during nat
ural behaviour.19 These SM changes reflect the hallmark 
characteristic of the ataxia phenotype that movements be
come segmented or decomposed into smaller movements.44

The wrist sensor data presented here also demonstrated pro
gressively smaller SM distance, peak velocity and peak accel
eration, with high test–retest reliability. The SM changes 
observed were similar to changes seen in healthy older indi
viduals54 and, as expected, were in the opposite direction of 
the changes seen during infant motor development55 and 
stroke recovery.56 Thus, characterization of SMs during nat
ural behaviour may also be a useful basis for motor assess
ments in other conditions affecting movement.

Computer mouse task characteristics 
in ataxia
The Hevelius computer mouse task was performed twice per 
week for 4 weeks (8 times total), requiring the participant to 
use a mouse to click targets on the screen for 1.3–9.0 (mean  
= 3.8) minutes each time. Individuals with ataxia took longer 
to perform each trial and had longer and more pauses, and 
their mouse movements were less smooth and less accurate. 
The number of movement direction changes were increased 
in preataxic individuals compared to controls, although 
this did not remain significant after correction for multiple 
comparisons. These characteristics are consistent with clinic
al characterization of the ataxia motor phenotype,44,57 prior 
‘in-clinic’ evaluation of computer mouse movements in indi
viduals with ataxia20 and evaluation of arm movements in 
ataxia using other digital technologies.32,58 All previously 
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trained Hevelius regression models showed strong relation
ships with ataxia rating scales and patient-reported function. 
The models trained based on pairwise comparisons between 
individuals with ataxia and parkinsonism20 were also able to 
significantly differentiate preataxic and control participants. 
Interestingly, the regression model previously trained to esti
mate UPDRS Part III showed the best performance in esti
mating ataxia severity and participant function. This 
model strongly weighted mouse movement and click features 
including task axis crossings, execution time, fraction of the 
main SM spent accelerating, number of SMs, max speed, 
click duration variability and click slip (model weights are 
shown in Supplementary Table 3). The features included in 
this model have relevance for both parkinsonism and ataxia 
phenotypes and highlight the utility of creating composite 
motor measures, which have the potential to be more accur
ate and reliable than single features.

Reliability of wearable sensor and 
Hevelius measures
We found that the vast majority of ankle and wrist sensor 
features had very high test–retest reliability when comparing 
data from Days 1–3 with Days 4–6. The two composite re
gression models trained on ankle data had ICCs of 0.95 
and 0.94. The high reliability of SM features and models is 
driven in part by the aggregation of information over thou
sands of motor primitives collected from many different be
haviours over multiple days. This enables the measures to 
account for diurnal and daily fluctuations in the disease state. 
Reliability is expected to be even higher when using data 
from an entire week.

The Hevelius computer mouse task also showed very high 
test–retest reliability when comparing the median perform
ance on the task during the first 2 weeks of the study with 
the last 2 weeks. Each session of Hevelius integrates informa
tion over 64 trials and median performance over a few ses
sions (three to four) produced highly reliable motor 
measurements with an ICC of 0.99 for the UPDRS regression 
model.

Ecological validity of ankle sensor 
measures
Continuous recording of movement using wearable sensors 
directly captures daily motor behaviours and has the potential 
to produce measures that closely reflect motor functions that 
are meaningful to individuals with ataxia. Recent studies in 
adult ataxias have used a sophisticated three-sensor system 
(two ankle sensors and one lumbar sensor) to assess gait33

and turn34 characteristics during a several-hour, unsupervised 
period at home, with ataxia participants instructed to include 
at least a 30-min walk (unassisted by walking aids) alongside 
their usual everyday activities. In these studies, specific gait 
characteristics including lateral step deviation and spatial 
step variability were strongly correlated with clinical ataxia se
verity as measured on SARA gait and posture subscore, with a 

Spearman ρ of 0.76.33 Furthermore, turn characteristics in
cluding lateral velocity change and outward acceleration 
strongly correlated with clinical ataxia severity (ρ = 0.79 with 
SARA total score) and also correlated well with patient- 
reported balance confidence on the activity-specific balance 
confidence scale59 (ρ = 0.66).34

Our work builds upon these real-life quantitative pheno
typing studies and demonstrates that a single consumer-grade 
ankle sensor worn continuously for multiple days, without 
guidelines or restrictions on behaviour, can produce mea
sures that closely reflect patient-reported function. The ankle 
sensor regression models, based on a small number of inter
pretable SM characteristics, strongly correlated with patient- 
reported function, as measured on PROM-Ataxia total and 
gait subset, with correlation coefficients of 0.81 and 0.83. 
These correlations with PROM-Ataxia were higher than clin
ical ataxia rating scale correlations with PROM-Ataxia 
(SARA: 0.76; BARS: 0.75) and higher than the Hevelius re
gression model’s correlation with PROM-Ataxia (0.73). 
Correlation of the ankle sensor-based model with SARA total 
score was also high with a correlation coefficient of 0.82. 
These observations are consistent with the intuition that in
formation derived from the individual’s own selection of be
haviours—their typical and natural daily behaviour—can 
accurately and, perhaps most strongly, reflect the individual’s 
own perception of their daily function.

Feasibility and clinical applicability
Participants in the study included individuals who were pre
ataxic as well as individuals who used assistive devices such 
as walkers. Thus the assessment tools were informative and 
feasible across a wide range of disease stages. While the ex
isting regression models demonstrate strong performance 
across the spectrum of disease severity, additional models 
could be trained in the future that are tailored for a specific 
goal (e.g. estimation of severity in very early disease states).

The motor assessment tools utilized relatively inexpensive 
and easy-to-use devices. The wearable sensor is commercial
ly available and costs less than $350. The only requirements 
for the Hevelius computer mouse task are that the laptop or 
desktop computer has at least a 15-inch screen, has a stand
ard USB mouse and has a stable internet connection with a 
web browser installed. These minimal technological require
ments for the at-home assessments may facilitate deployment 
in clinical studies and increase access.

Most participants indicated that they would be willing to 
complete the full or an abbreviated version of the 4-week 
study again. Our reliability data indicate that a 2-week 
data collection period involving 1 week of continuous wear
able sensor data collection and twice a week performance of 
Hevelius for 2 weeks is sufficient.

Limitations
There are some limitations in our study. There was hetero
geneity in the medium-sized cohort, which included 34 
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individuals with SCA types 1, 2, 3 and 6 and MSA-C, most of 
whom were recruited from a single site (n = 29). Our goal was 
to identify general motor measures that were applicable 
across this set of diseases with overlapping phenotypes. 
Disease-specific models could be trained in the future with 
larger-scale data collection across multiple sites, which is 
feasible with these at-home technologies. Given that the pri
mary aim was to establish the relationship between digital 
motor measures and patient-reported function and ataxia se
verity, there were a relatively small number of controls in
cluded in the study. However, the control sample was 
sufficient to identify strong and statistically significant differ
ences between ataxia and control participants, including dif
ferences between preataxic and control participants, thereby 
highlighting the sensitivity of these tools. Larger samples of 
control and preataxic individuals will be needed in future re
search to characterize the ability of sensor and computer 
mouse measures and models to sensitively identify disease on
set and measure small changes in the earliest stages of disease. 
Furthermore, longitudinal studies will be necessary to assess 
sensitivity of these tools for capturing disease progression.

Conclusion
In summary, we report on two relatively inexpensive, 
easy-to-use and fully remote quantitative assessment tech
nologies that demonstrate potential for use as motor out
come measures in clinical trials. Continuous ankle 
sensor-based measures and Hevelius computer mouse task 
measures correlated strongly with both patient-reported 
measures of function and ataxia rating scales, had very 
high test–retest reliability and strongly distinguished be
tween ataxia and control participants, including preataxic 
and control participants in some cases. The ankle sensor 
composite measures are based on interpretable SM features 
that have specific relevance to the ataxia phenotype and 
more generally to the control of movement. These real-life 
ankle movement measures correlated more strongly with 
patient-reported function than task-based clinical ataxia rat
ing scales, further supporting that they capture aspects of 
movement that are meaningful to patients. The cross- 
sectional properties with high test–retest reliability and sen
sitive relationships with disease severity suggest sensitivity 
for measuring disease progression. Longitudinal data are ne
cessary to evaluate and quantify sensitivity to disease change.

Supplementary material
Supplementary material is available at Brain Communications 
online.
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